Meet Our Grant Winners

With the help of our community, PKD Australia has invested over $300,000 in the last two years into much needed Polycystic Kidney Disease research. This year, we are awarding three research grants to outstanding PKD scientists through our Research Grant Program. We are delighted to introduce to you the recipients of our PKDA 2019 Grants and are thrilled to be supporting such incredible research, that has the ability to make a brighter future for PKD patients.

Dr Andrea Wise- Kidney Regeneration and Stem Cell Laboratory, Monash University

Kidney organoids from patients with Polycystic Kidney Disease
The reprogramming of adult cells to generate stem cells – namely, induced pluripotent stem cells - has advanced the study of disease modelling. Recently, there has been great excitement in the ability of iPSCs to self-assemble into three-dimensional structures that resemble mini-kidneys. These kidney organoids express markers of different kidney cell types and show great potential in many applications.
including disease modelling and regenerative medicine. This project will develop these “kidneys in a dish” targeted to PKD. This research will facilitate the use of kidney organoids from PKD patients, and genetically altered PKD organoids, for disease modelling, drug screening, and in the future, potential development of novel stem cell replacement therapies for this debilitating kidney disease for which there is no cure.

Dr Sayan Saravanabavan- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney

Role of mitochondrial genomic analysis as a prognostic biomarker in autosomal dominant polycystic kidney disease (ADPKD)

Genetic testing in ADPKD is in the early stages of development, and more sophistication is needed to help predict who is at higher risk of developing kidney failure. Energy metabolism in cells is altered in ADPKD and changes (mutations) in genes that regulate the mitochondria (the main energy producing organelle in our body which has its own genes) may worsen the severity of ADPKD. The aim of this study is to determine if mutations in mitochondrial genes affect the severity of ADPKD. The results of this study could help better identify patients who are at higher risk of developing kidney failure, and also lead to new approaches for treating ADPKD.
Is a hormone controlled by the brain driving high blood pressure in PKD?

It is well known that high blood pressure is common in people with polycystic kidney disease. Why blood pressure increases in people with polycystic kidney disease, however, is less well known. This project seeks to determine how the brain is contributing to the development of high blood pressure in polycystic kidney disease by uncovering what hormonal changes the brain is initiating that result in high blood pressure. This work has the potential to identify new treatment targets that could be used in individuals with polycystic kidney disease to lower blood pressure and reduce their risk of developing diseases associated with high blood pressure.
Musings from the Chair

With so much that has happened in the first 6 months of the year, it's a good idea to catch your breath and catch up on the highlights in Volume 6, June 2019 Musings from the Chair.
Supporting PKD Research

If you would like to support much needed PKD research we remind you that we are a Deductible Gift Recipient registered organisation which means that all donations made to PKD Australia of $2 or more are tax-deductible. This means that you can reduce your tax burden while making a real difference. You will also be issued with a tax receipt immediately after your donation has been completed for your records.

Our researchers tell us that $20 will pay for the preparation of a specialised microscope slide to analyse PKD kidney tissue to help understand the cause of PKD cyst formation and $100 will cover biochemical tests of kidney function for one PKD clinical research study subject.

Simply click on the button below to donate and thank you for your generosity.